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Finally, in applying the generalized expression to calculate the fields, we
simply insert the vector potential to evaluate the magnetic field, and then insert
the curl of the vector potential to evaluate the electric field. Since the shape
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slab to simplify extracting and evaluating the relevant correction terms in the
generalized Leibniz expression. Reducing the correction terms yields identically
the expressions for the depolarizing dyadic previously calculated for an arbitrary
as well as for a pillbox/slab volume. This process also reveals that the Leibniz
correction terms are directly related to the depolarizing dyadic which represents
the difference between Maxwellian qnd cavity-defined fields.
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Application of a Generalized Leibniz Rule for
Calculating Electromagnetic Fields Within
Continuous Source Regions

1. INTRODUCTION

In the following treatment of electromagnetic fields in source regions we calculate E and H

due to a continuous current source by direct differentiation of the vector potential, using a

principal volume approach similar to that in YaghJian's article on Maxwellian and cavity

fields1 . This paper, however, presents an alternative differentiation method and

interpretation of the mathematics governing transposition of differential and integral

operators when the integration limits depend on the differentiation variable. What most

calculus texts term the "generalized Leibnlz rule" pertains specifically to this subtle point

when differentiating 1-D integrals. Therefore, it seemed appropriate to employ a three-

dimensional version to rigorously perform the curl of a volume integral.

After searching the literature for such a 3-D version of Leibniz' rule and finding no

previous examples we derived the 3-D generalized Leibniz rule from first principles. When

subsequently applied to the vector potential in a current region. the 3-D generalized rule

produced the rigorous expressions for the "cavity" as well as "Maxwellan" electric and

magnetic fields. One merit in using this direct approach is that it relates the additional terms

arising from the 3-D generalized Leibniz rule to the difference between the Maxwellian and

(Received for Publication 11 Jan. 1989.)

'YaghJlan. A.D. (1985) Maxwellian and Cavity Electromagnetic Fields Within Continuous
Sources, Am. J. Phys. 53:859.
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cavity fields, that is. to the source dyadic term. This study also encourages further

applications of the 3-D Leibnlz rule derived here, wherever differentiation is required uf
integrals with limits that depend on the differentiation variables. Such possibilities lie in the
analagous electrostatics problem2 , and perhaps in the theory of fluid dynamics.

2. DIRECT DIFFEREN IATION OF THE VECTOR POTENTIAL IN A CURRENT

REGION

From the expressions for the fields in terms of the vector potential A of a volume current
density J, with the e-i( t time dependence suppressed, the H field requires one curl operation,

H(r)-I0(V xA (r)),(I

and the E field two in succession i ,

icor0 1 [toJ(r) - V x V x A(r)1, (2)

where

1M J(r'} eik I r - re

Air) IR foi dV (3)
v -v r-r

Though we will only treat current sources initially, we will generalize the results later to

include polarization and magnetization sources as well. To unambiguously define the
"Maxwellian" fields inside the source region we use a limiting principal volume, V6, in Eq. (3)
to eliminate the singularity of the Green's function right at the observation point. We may
relate these mathematically defined Maxwellian fields to operationally defined "cavity" fields
by cutting a hole, Vc, in the source, inserting a test charge, q, measuring the force exerted on
the test charge by the now external sources, and calculating the fields, from

2 Portis, Alan M. (1978) Electromagnetic Fields, Sources, and Media. John Wiley & Sons, New
York, p. 40-41.
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E o rn The difference between the Maxwellan electric field and the operationally
q-0 q

defined cavity electric field is contained in a source dyadic term, which emerges as the

ultimate product of this analysis. It is important to realize that V, is fixed during the

differentiation with respect to r whereas in Eq. (3), V6 shrinks around the observation point,

moving with the differentiation variable, r. Thus, V - Va varies with r. The mathematical

repercussion of this is apparent whenever we take the curl of A (that is, differentiate with

respect to r). Specifically, the limits of the integral in Eq. (3) depend on the differentiation

variable, which prevents a casual interchange of the V and J operations.

To overcome the restriction on interchanging this differentiation and integration.

Yaghjian changes the integration variable from r' to r" = r - r, to remove the dependence of the

limits of integration of the differentiation variable, r, and proceeds to evaluate the fields

using, initially, a spherical principal volume. 1 Since Leibniz' rule already governs

differentiation of integrals, an obvious alternative to YaghJian's change of variable is to

extend and apply the generalized Leibniz' rule to the 3-D differentiation of the vector potential

volume integral. This straightforward method retains both the singularity and the

dependence of the limits of integration on r, and still yields identical results for the fields.

References to multi-dimensional forms of Leibniz' rule are rare and apparently address

only the case of fixed integration limits rather than the "generalized Leibniz rule" which

allows variable limits of integration. For example, Osgood states, "In the case of multiple

integrals, we assume that the region of Integration is fixed 3 . Cases arise in hydromechanics

in which the region varies with the parameters, but the treatment does not belong to the

elements of the calculus." A 3-D rule is required for the problem at hand, so at this point we

embark on a derivation of the 3-D generalized Leibniz rule.

3. FORMULATION OF 3-D GENERALIZED LEIBNIZ RULE

In Cartesian coordinates, the curl operator can be written as a sum of partial derivatives,

aKz  +KY aKx z + (aKy1
0x-1~jy az +Y )z ax) (4)D

where K, in our problem, is the vector potential volume integral. We wish to apply the

familiar I-D Lelbniz rule to each of the six partial derivatives above. Consider first the

generalized 1-D Leibniz rule:

3 Osgood, (1925) Advanced Calculus, MacMillan, New York, p. 463.
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a2 xJ a2(x)

Xf fOx = x dx J (x.x') dx'+ n- () f (x, an(x) dx (5)

ax) a1 (x)

Eq. (5) shows that exchanging the differential and integral operations adds (subtracts) an
additional term for each variable upper (lower) limit. We will find that the curl of a volume

integral will, in Its most general form, require six additional terms (one for each limit in the
volume integral): these will generate a total of 36 additional terms. Fortunately, a proper
choice of principal volume geometry will later eliminate most of these terms.

We derive the 3-D rule in similar fashion to the 1-D rule, applying first the chain rule and

then the fundamental theorem of integral calculus. As an example, we write explicitly one

term from Eq. (4):

fl x a f a 4  f a a2 F r r'd
5z TZ J

fa.6Ja 3  al ~ , d'

where K depends on the variables ala 2 (r,y',z'), a 3 ,a4 (rz'). aa 6 (r) and r. The derivative of each

component of K can be expanded, using the chain rule, as a sum of the derivatives of each

parameter, holding the other six constant.

&Z noI aan nz ar az Z 4 , a 5 , a6 constant (6)

The fundamental theorem of integral calculus Is now applied to the volume Integrals as

follows:

=__ f as a4 a2 Fx ( r, x', y', z' ) dx'dy'dz' = a- a F ( r, x'', y. a I ) dy'dz'. (7)
aa a a 3 f~ a

4



Similar expre,-Ql.ns hold for a2 - a6 as well. If we apply the chain rule to each partial

derivative in Eq. (4). and in turn the fundamental theorem to each term in Eq. (6). after

collecting terms we can write the generalized 3-D Leibniz rule in a form analogous to the I-D
ru:le 4 , with the help of the Fjk Levi-Civita symbol. Specifically,

(VxK)1 m aE3 Kk

1.a f C a F 
(8 )

4f a f f

2 nk j a a .

+k X" (-1) Fk(r. le a.x .)dxdx
n=1 fa, Ja.4

4 n(aa a. a2

" J Fk(r, x1 , a. X3 )dxidX3

6 n(aa ta 4  a
- l a Fk (r, x' V x'2' an)dx'dX2"n=5 nJa f1a

Note that summation over repeated indices is implied and thus each surface integral is a

summation of 12 additional terms. This is the central result which we will use to calculate

the electric and magnetic fields in the source region given the vector potential. We emphasize

that the field calculation is done to verify that the square-bracketed terms In Eq. (8) give rise

to the source dyadic term.

4. TAILORING THE 3-D GENERALIZED LEIBNIZ RULE

Returning to our specific problem of evaluating the vector pot"'ntlal Integral, Eq. (3), let us

choose initially a disc-shaped (pillbox) princlpid volume to evaluate the surface Integrals.

Choosing a disc principal volume, rather than a sphere or cube, it. this case is advantageous

4 Kaplan. (1952), Advanced Calculus. Addision Wesley, Reading. MA. p. 221.
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because it greatly simplifies the 3-D Leibniz expression by eliminating all but 2 of the possible

36 additional terms.
We wish to evaluate the vector potential A by summing the contributions from the surface

of the disc principal volume to the edges of the source region, as the height of the disc, 2C.
1r

shrinks around the observation point r (Figure 1). We will, accordingly, substitute V, and . , 0
lir

for V6 and lio on the surface integrals. Obviously, the outer limits of integration are fixed,

since the source volume is finite, Furthermore, in Appendix A we prove that the truncated
disc can be replaced by the thin slab In Figure 2 where the disc radius extends to the edges of
the source region.

0 -Y

Figure 1. 'Pillbox', or 'Disc' Principal Volume.

0 7

Figure 2. 'Slab' Pncipal Volume.
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Next, divide the volume of integration Into the volumes above and below the thin slab.
Each of these two volumes are singly connected and thus we can apply our generalized 3-D
Leibniz rule [Eq. (8) to each region. The limits in the x- and y- directions are constant, and
the only variable limits remaining when Eq. (8) is applied to each region are the z'
integrations. We now integrate over the source volume from z' = z+ c to Utop, and
z' = z - e to 2bot , and from x', y' = flieft to D-ight where Q2 represents the distant boundary of the
volume current, J. The only additional Leibniz terms demanding consideration are those
corresponding to the z' limits of integration. In particular, our bounded current region
(excluding a slab principal volume) in Eq. (8) yields:

V x 1 1 F (r. rldV' = rM V x F (r. r'dV'6 0 ff-80 f

v -v8  v -v 8  (9)

+ 11 f F (r, x', y', z' = z + ) dx'dy' -f F (r, x, y', z= z - c) dx'dy'

S S,

+Y y f f .f F(r'x.Y"z'=z+ F)dx'dy'+J F(r.x'.y'.z'=z -)dx'dy

where the limit representing the surface of the principal volume splits into two terms.
one for the upper slab surface and one for the lower slab surface. This expression is particular
to our geometry but holds for any sufficiently well-behaved vector function F.

5. CALCULATION OF MAXWELLIAN FIELDS

To calhulate the Maxwellian magnetic field H(r) from Eq. (1) at points within the source
region, we simply differentiate the vector potential A in Eq. (3) using the 3-D generalized
Leibniz rule [Eq. (9)]

7



11M F(r. r') dVj.(0IL O •f (10)

Comparing this with Eq. (9), we set F(r, r') = J(r') N (Ir - rl),

where W(r, r') = Or - to give:

H 1 [urn V x J(r') x (r - r'j) dV

L V -V8  11)

+l X jy W' -- J + z = z-_F)d

-siI f ( Yz' =z+e Y dS'

+ff (- XWI = z+c E+j XVjz = z _ )dSII.
Se

Up to this point we have dealt with the problem of rigorously interchanging the curl and

integral operators in Eq. (10), but have simply assumed that the curl and limit could be

interchanged. Thils assumption can be proven valid by dividing the volume of !ntegration
(V - V6) into two regions, an exterior region (V - Vd) and an annular region (VNj - V6), where Vd is

a small but finite fixed volume enclosing V6 . Since V - Vd does not depend on 8, the curl and

limit for this part of the volume integration can be interchanged immediately. If Vd is made

small enough so that J can be expanded in a power series over Vd. the annular volume

integration over Vd - V& can be performed and the curl taken before or after the limit Is taken.

This procedure shows directly that the result remains independent of whether the curl or limit

Is taken first, thus proving that the curl and limit can be interchanged In Eq. (10).

To evaluate the four surface integrals. we note that if J , (upper) =

8

r lZ' m4M l I



(lower) and if J q=z+C (upper) =Jy (lower), all the surface integrals cancel. Since J

approaches the same value on the top and bottom surfaces of the slab, as the slab becomes

very thin, we need only consider v'-- elkV(x - x')2 + - + (z- z')2  Obviously, for

=(x - x')Z  + (y- y,)2 + (z Z) 2

z' = z+ or z' =z- c, (z- z 2 =e2 so z'=z+= =z-.That is, the Greens function has the

same value on either surface of the slab, and thus It follows (see Appendix A) that both pairs of

terms vanish in Eq. (11)*, leaving the rather anti-climactic result for the magnetic field,

H(r) iirn V xJ (0 w p(Ir - r.I) dV}12Io&0f(12)

As Yaghjian states, "The merit of the rigorous procedure does not become obvious until it is

applied a second time to find the Maxwellian electric field."I The electric field calculation

proceeds from Eq. (2) in the same fashion as that for the magnetic field, except we differentiate

the vector potential twice: E(r) oc V x V x A(r). The first differentiation, we know from the

magnetic field calculation, yields no additional Lelbniz terms, so we may exchange the

differential and integral signs,

VXltm JdV = lm f Vx JddV.
o.0 f 60 J (13)

v -v8 v - vs

Differentiating again we write,

Vx VxJm JdV] x im V x J .dV-
o v -v 8  (14)V - vb

where, as explained above, we may interchange the curl and limit. To evaluate the RHS of

for the case where x = x' and y = y, la J bo aces
o dS'becomes Ik on both surf

S

9



Eq. (14), we apply the same 3-D Leibniz rule, this time setting F - V x JV in Eq. (9). Thus,

ERoj(= - o  V x VxJ(r') v( r- rl)dV

e.0 vo _v (15)

X-+ ff (V x +W dx'dy - JJ (V x -V) dx'dyj

To evaluate the two pairs of Leibnlz surface integrals in Eq. (15), we first use the following

simple vector identity to transform the Integrand F = V x Jd:

VxJp=Vx VJ = VV x J + A(V xJ). (16)

Noting that V x J(r' = 0, since V operates only on r, we can rewrite the surface integrals In

Eq. (15) as:

iX{ (Vx J)y =  dx'dy' - ff (VW aX)YZ- dx'dy17S.O z+zi- JJz- (17)

+dJ- (Vx ')xL. + E dxdy' + Jff (V X J) Z -edx'dy'j}

Next, we examine the x- and y- components of the vector product VW x J:

10



(VW, x _-(VV,,= - (vwJzjy (18)

where the components of the gradient of the scalar Green's function can be written

3 eIkr - ef [ikir - r'l - 1]( (19)V /--- Z . . l-xlx1 = x

4,1r- rl X2 = y

X 3 = z

Recall that In the magnetic field expression, the scalar Green's function V had equal

magnitude on the upper and lower surfaces of the slab principal volume. This was due to the z
dependence being quadratic (that is, (z - z')2 = e2 regardless of z'). In the case of the electric

field, though, the factor of (z - z') corresponding to I = 3 in VW is linear. The result, upon
substituting the components from Eq. (19) into Eq. (18), and subsequently, Eq. (18) into Eq.

(17), Is

- lim x " ff [ Y (x -x')Jz(x'. y. z +E) + YEJx(X', y'. z + E)

SE

(20)
- Y (x- x') Jz (x'. y', z-e ) + yJx(', y'. z- F) jdS'

+Y-f [ Y(YY')J(x" YZ+ + J Y z+

S F

- y (Y Y') J (x',y', z- F)+ yJy(', y', z )- c) dS'}

where the shorthand notation y = e ik I -rl [ik Ir - -1 has been introduced.I"3
41 Ir - r

At first glance, It appears that the pairs of terms containing y (x - x') and y (y - y') will

cancel immediately while the terms containing e will add. Indeed, the following evaluation of

11



these integrals proves this to be true. The analysis used to evaluate the terms in Eq. (20) is

similar to the H field case. of Appendix B:

(1) Within a continuous current distribution, opposing currents on the upper and lower

surfaces of a slab of infinitesimal thickness e are equal. To be certain, however, we expand

J (z + E) and J (z - E) in a Taylor series about z:

2
it (z + e) = J(z) + E £J'(z) + - J(z) +... (21)211

2

J (z - e) =JI(z) - etJ.(z) + '-Ji(z) +

Subtracting the two gives 2eJ' i (z); adding gives 2J, (z). Thus. in the limit as c-40, all the current

terms become zero, because they are each multiplied by a factor E at some point. Therefore.

whenever JVV is shown to be finite, we can discard the product EJ VV.

(2) The gradient of the scalar Green's function VV yields slightly different integrands for

the x- and y- components than for the z- component. Translating into polar coordinates.

according to Figure 3 we have:

ikl 22
2n erl P+ kp' 2 cos e dp'dOlira f 2 (x -x') dS'= Hi-a E em + 2k'2 + dSt0 £ o 27r p,2  2 (22)

Jimn 211 r eikp +CP 2cos ' dp'dO
- 2n(P2+E2)

and
e 2 2

2 et' i kp'dp'dO'
Jirm 2 y dS'= I r- Ee

C£0 f 2 2
f # J- o 2n(p,2 + E
S.

J2 22 r e + p'dp'dO
,0 J f2 3/2C 00 f o 2 n ( P , 2 + e 2 )

12



I V)

SIDE VIEW OF SLAB 4Z

TOP VIEW OF SLAB
SURFACE

Figure 3. Polar Coordinates for Evaluating Surface Integrals from Leibniz Rule Application

Because we will be taking the limit as F--0 and each of these integrals is multiplied by a zero
current term, we can discard all portions that are finite as ---0. First, note the graphs of each
integrand in Figure 4. revealing the validity of the following approximations:

a. Since the singularities only occur as p'-.o and F-.O, we discard the finite portion of
the curves above p' = d. thereby establishing d as the upper limit on the surface
integration.

b. For very small p' and e. e ' + 21.

13



(p,
2 

+ f
2

)

L P (4a)

I BY DEFINITION,
d

E<<

lira f0 0

P' -
W2 , E2)

3 / 2

I p' (4b)

f d

(/,2 2" ) : O(4d) d

1,,/ 2), 
0 0 2 )

/

1/ V, (4c)W2 2/

p, e p, >>E -Lp

Figure 4. Graphs Depicting Infinite and Finite Portions of Integrands Involving VWV.

With these assumptions, the first of the four integrals, depicted in Figure 4c, is finite and

vanishes in the limit as c-,O.

Because the singularity in the remaining three integrals is higher order, we evaluate these
Integrals directly. First, we note that the d9' integral conveniently yields a factor of 2 n. All p'

integrals are tabulated, and are evaluated as follows:

l fo p'2 dp llm P d + In d +- + E I

(a) - d 2 3/2 e.0 --

I - im e In (2d) -I'm lnF = 0.
C-40 E.0

The last term vanishes by LHospital's rule.)

14



(b) -I- Ek Jim k gIn - + I
(P2 +E2) " 2O

Using the approximation that as -,o. e >> 1, we have 1,,, 1k2 ,.In,2,) . Since In d2 IS

finite, we discard it, and Irm - Ik e In e = 0. [This result also vanishes by L'Hospltal's rule, as

in (a) above.]

d d
,m F = - ,, m -- ltm C I1 1j=P(C } 8 o P --- -.2 3 / 2 C. o 1 1 ~ 0 C o [ d

Thus, only the last integral In Eq. (22) survives.
This non-zero result for the fourth integral is, in fact, the crucial discrepancy arising from

the double curl operation in Eq. (2). It is particular to the slab/disc principal volume. We will
quickly see that it generates the correct source dyadic term L8, for a slab/disc. Inserting the
results of Eq. (21) and (22) into Eq. (20), we find

l"m. fi [ (x - x) (2eJ') - yE2J dS'+Y 7J' (y Y') (2eJ') - Te2Jy] dS'} (23)

=2J (r) + J(r).

Finally, we insert Eq. (23) into the electric field expression.

E = 1 J(r) =r J' Vx (jr - r' ) x J(r') dV - RJ(r) - yJy(r)

v -va

and combine terms to get the final electric field result:

15



0)IIi r VVv (Ir - ri ) x J(r')l dV' + iJ (r) (4

where iJz(r) is the scalar product of the current, Jz, and the pilbox/slab source dyadic,
- 5.

It is desirable, at this point, to express the E field in terms of the electric dyadic Green's

function, GE(r, r) - + l4 (Ir - rl). To do this we employ the Identity

v X (v J#) j *V [v- v 21 V and invoke the homogeneous scalar wave equation,

V2 , = -k2 ',. (r s r').

Er) 1 J sr J(r) k21 + VV' (r - r ) dV + jf(r)l

v -+vd

(25)

=10 i '.0 li5 Jlr) * I 'p (Ir - r'I) dV' + Tz(r)/ioF06-0 f z2

V - va

f zJz(r)

E(r)= - 0 Io)%H J(r') GE dV +

V - V8

Analogously, we can express H(r) [Eq. (12)) in terms of the magnetic dyadic Green's function,

5 Yaghjian, A.D. (1980), Electric Dyadic Green's Functions in the Source Region, Proc. IEEE, 68:
258.
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H(r) _ o J JE(r) GHdV (26)
v - V8

where

GH (r, r') - Vx wI.

6. CALCULATION OF GENERIC SOURCE DYADIC GIVEN A PARTICULAR SOURCE
DYADIC

Having calculated the source dyadic corresponding to a designated principal volume, V8D.
one can derive a general expression valid for an arbitrary principal volume, V8 . This process
improves our appreciation of how the Leibniz rule surface integrals relate to the general form

of the source dyadic, L8, also a surface integral. Restated mathematically, we can show that
our result for the electric field, excluding a disc principal volume, is,

E(r) = flira J(r') e GE (r, r') dV' + (27)

can be rewritten and simplified to yield the general expression,

E(r) = icnot I'm J(r') *G (r, r') dV' + Le (r

V - Va

where

"~~- ne-dS

S8

17



and

(r-r)
Cr U' r

We accomplish this by circumscribing the disc principal volume with the arbitrary principal
volumes (or vice versa), as shown in Figure 5.

Figue 5 Aritrry rinipa VoumeCircmscibig Dsc-hapd PincpalVoue

FiYghuren A.. (1982).r APDelta-Distriutein umDeriing ofsctheei Finitheource

Wegian rert eectromgeic 2:e 161-167 ntrso 6

F.() iwo 1M J~') G(r r' d + J~r) G(rr' 18



The task Is to solve the second integral.

lm J J(r') - G (r, r') dV
6.Of D

V8 - Va

by considering the integral over Just the Green's function,

v -VS v-5V

Again, we may bring the J(r') outside the integral since the region under consideration Is

small.
Moving the origin to r so that Ir - r'j = R = lr', and changing to spherical coordinates, we see

the unit dyad integral vanish as the limit is brought within the integral sign:

lira I e--Rd

v - V8

f ekR

= Iim I - R2 sin OdRd~do 8 = 2R
6.0 R =2v -v8  =2

dR

- lir I e tk R 8 sin 4d8dOdO
6.0 J 4

V - V8

=0

To perform the VV Integral over the primed volume, we use V = - V and apply the equation

SV' adV' = fs ' adS' to the outside and inside surfaces of the shaded volume in Figure 5,

V6 - VD- which contains no singularity.

19
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Aira ' dV=Iir _ U' VdS'+ V dS-*OJ b ,O s n JD n
0

va -v 6

= k2 jim G. (r
6 0f ID

V8 -V5

From Eq. (19). we know VW= e__fik - so we rewrite each surface integral as a sum and
FrmR)

solve them all separately:

-1 elkRili Un VdS' = I'm - dS'
800 fln8 n r 4ixR

S8  s8

m ^ , j eikR
-l 0mf I n er 4-- 2 dS "

S8

For the integral over the surface of V,, the surface element more than cancels the singularity.

.lim IA' VipdS =.iimik - A.', e" R2 sin OdOdo
,of n .04n Un r R f

$6 A

6

f a', ek
R .dS

6 0 4n -- --

A

Taking the limit, the first integral on the RHS vanishes with R. and e1kr . leaving

L JA: r dS' , L6. For the surface integral over the disc principal volume, we write dS' in
4x A nt Fe

cylindrical (polar) coordinates and take the lirit as 0,. eliminating the contribution from

the sides of the cylinder, as indicated in Figure 6.
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2 r

C.0f n h-n e2 J4j-2- pd op BOT

D D
S8  S8

22I f ' elk +
11J un e p LO4B'dp'do O

e. f n 4r(P'2 +2) O O

Ss

Un.

0.

obs. pt.

Figure 6. Unit Normal Directions for Disc and Arbitrary Principal Volumes.

.D

To perform these integrals, er and un must be expressed in terms of p and E. as shown in

Figures 7 and 8, giving:

21



so the p components cancel, leaving I r = I r over the cylinder ends. Using the ratio

-Ideduce that b Obviously, in Also we note that since
E +

ez and point in the same direction, the integrals over the ends of either cylinder add.

A

AA
e z n

Figure 7. Cylindrical Polar Coordinate System and Unit Normal Directions Assumed in
Deriving Source Dyadic, L8
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LHS RHS

-e A
-e -er

0 A
-ae i

Figure 8. Side View and Cut of Disc Principal Volume Showing Directions of Position

Unit Vector and Components

We now have, after performing the dO integration, and setting e&k V P+E 1, (these

integrals have already been solved):8D S/'
8/2 p'dp' 3/2

E~ f iPD V~dS'= ki"22-^mD^^,=ik m~ (p,2 + I '2 2'' 2 - ^
llm+0C-. PD +E V dS --- .z -0 

_2). . ig~ e
+ z

S8  p=O p=,

Thus, returning to Eq. (27), we simply substitute - for ir f GE dV' which gives
k2 8 ,o E

kvs 6

E~~~r)~^ = ~) (,__ J (r)glm Jr) * GE (r, r') dV + Jr' __j + z

or

23



E(r) = logo lim J(r') * GE (r, r') dV + L6 0 Jr
& 10O i co °

v-v a
v 8

This procedure of circumscribing a particular principal volume with another of arbitrary
shape always results in two terms: L6, and a term to exactly cancel the source dyadic

representing the original principal volune. The complexity of our derivation of the disc
source dyadic is thus somewhat redeemed by this simple connection to the general form. In
fact, using this procedure, any accurate expression for the electric field in terms of the

particular source dyadic for a sphere, disc, cube, ellipsoid, or any other principal volume
shape can be transformed into the general formula, in terms of L6, which in turn can be used

to find the source dyadic for all other principal volume shapes5 .

7. POLARIZATION AND MAGNETIZATION SOURCES

So far, we have considered only a source of electric current, J. To include polarization and

magnetization sources, we note that, in general, the "electric current", JE, Includes both current

and polarization, but the "magnetic current", JH, consists only of magnetization, written

i J O J - MP

J H = 0 + lawuM

We incorporate polarization by simply substituting for JE. we Incorporate magnetization by

summing the field equations and their duals. (where E-,H, H-*E. F-<--J-) and substituting for JH.

The total field expressions for an arbitrary principal volume, taking into account current,

magnetization, and polarization, are thus:
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E(r) = lim Ic 0  J 0 GE M * GE dV +Joio%

v-v 6

H(r)=lim GJ GH" * ME+k2GH'M d Vr- L, ' M.

v-v 8

Having derived the fields using the 3-D Leibniz rule It Is now easy to appreciate how the
Leibniz additional terms form the source dyadic, 1-. Comparing Eq. (23) with Eq. (25).

&*J =J(r) lim ff Y J (x',y', z) dS' -imy 'EJy(x',y'. z) dS'.
tweo°  E'o ff Xo Y f Y(28)

S8  S8

On the RHS are two additional Leibniz surface integrals which compensate for the r
dependence of V8.

If we had chosen in the beginning to evaluate E and H using a cavity volume, Vc, to exclude
LS J

the observation point, the source dyadic would never result. Hence, the source dyadic L is

the difference between the Maxwellian and cavity fields, that is, EM - Ec . It Is easy to
1COF-0

see why this occurs by considering how the equation above would read for a cavity volume
rather than a principal volume. Since the cavity is formed by physically removing a small
volume of current around the observation point r, J(r) = 0. Because the location of the cavity
is fixed during the differentiation of A, Vc does not depend on r. Obviously then, the
integration limit, V - V. does not depend on the differentiation variable, r. Thus, the regular
Leibniz rule permits interchanging the differentiation and integration. Since the "generalized
Leibniz rule", which involves variable integration limits, Is not necessary for evaluating

cavity fields, no additional terms [the surface integrals' in Eq.(28)] arise, and a = J(r) = 0.

8. CONCLUDING REMARKS

Using a principal volume approach, we have made a thorough study of how
electromagnetic fields behave in the source region, by deriving and applying a generalized 3-D
Leibniz rule to correctly differentiate the vector potential. Section 1 began by considering
only electric current sources and emphasized that the difference between cavity and
Maxwelllaa fields hinges on rules restricting interchanging differential and integral
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operations. Then, a 3-D version of the generalized Leibnlz rule was derived, to properly

perform the interchange and was subsequently employed along with a disc principal volume to

calculate both the magnetic and electric fields. In Section 5, the fields for an arbitrary

principal volume were derived and found to be identical to those derived previously, using

other techniques. Finally, the duality of Maxwell's equations was invoked to obtain the field

expressions which include polarization and magnetization sources, in addition to current.

While this exercise reproduces previously known results for the fields, in doing so, it not

only provides a clear and completely rigorous, straight-forward treatment of the problem, but

an Intuitive explanation as well, from both a mathematical and a physical viewpoint.

Primarily, the extension to three dimensions demonstrates the breadth of Leibniz'

fundamental rule, providing a glimpse of its potential to enhance precision in volume integral

formulations.
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Appendix A

Proof of Validity of Exchanging the Pillbox Principal Volume
for a Slab Principal Volume

Working in rectangular coordinates, the most logical principal volume shape for excluding

a singularity of the scalar Green's funcU, il Wg is the disc, or pillbox, shown in Figure Al below.

Figure Al. Extension of the Disc to a Slab
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To specify which of the 36 additional terms in the generalized 3-D Lelbnlz rule actually

contribute to the fields, it is advantageous to extend the x- and y- dimensions of the disc,

forming a slab principal volume. We wish to show that the disc and slab can be used
Interchangeably as the limiting V6 in the vector potential integral. To do this we simply show

that the vector potential, integrated over the shaded region, vanishes as the thickness, 2E,

approaches zero:

A (r) m (r - r'i) j (r-) dv =0 (Al)
shaded 6_4 f (O1

Vslab - Vdisc

or. in cylindrical, coordinates,

(2) e Ir elk +z- 2

sAded (r) J (r') p'dp'dO'dz' (A2)shade == 0 f IP +Z

where we have moved the origin to r. By definition of the disc germetry, i 0 so we have

replaced 8 0 with e .0. We assume J is approximately constant over a thin Az, and perform the

z integral first, noting that the integrand is an even function, symmetric about z = 0:

'm 2 p'dp'f dOJ(r') e dz (A3)e-.0 -- 0 7 - :

Using the inequality

e lkf e2 dz' < dz' (A 4)

we can evaluate the RHS as:
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r J (0 In Z + I I II (A5)

M Urn J(r') Iln C +V + ln (pi)

= J(r') [In (p') - In (p')] = 0.

Therefore, A.haded = 0 proving that it Is, in fact, valid to use the disc and slab principal
volumes interchangeably.
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APPENDIX B

Proof That W Terms Cancel if They Are Equal and Opposite,

Despite Singularity in i

Recall that in the Maxweflian H field calculation, we arrive at the following expression
after considering the 3-D Leibniz rule:

H(r) 11 lir f V x J(r')v(Ir-r'l) d 3 r '

go 8-4o, (B 1)
v -v8

11 [x if ~ t' + j ~~dx'dy'

+ Y if ('xt - JxlVbt)dx'dy1

Where wtp and 'bot are the values of W[ I r-r' I) on the upper and lower surfaces of the slab

principal volume.

The functions Wtop and wbt are equal, (Wtop = Wbt = 4), yet still singular:
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%VtOP = V i (_e 2 2YT _~l 2 (,Z
Vx-x' + (y-y) + (-e) Iizze (B2)

W1 eiy_'2+by'2+C

We wish to prove that In spite of this singularity, the quantity in square brackets in equation
(BI) vanishes. Since 1 top = AVbOt, we write

[i-* I ' av xy+~ V( J.Itp - J.ibot~ddj

We expand Jx (z'=z + e) and J,, (z'=z ± Jin a Taylor series:

2
J (z=z+~ =Jz) +eJ'() +EJ()+

top 2!

2

j (z'-z-e) =J(Z) - F-J'(z) + -J"(z) +

Subtracting, we have

Sybot iytop -- zl Z

jXtOP xbot 2ez' Z

Substituting these expressions into (B3), we obtain for the bracketed quantity

42eJ(Z) f-X- if pdx'dy + ff JJ dx'dy']
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To integrate over V, we express the integrand in polar coordinates and impose an upper limit d

on p', since #y is singular for only small values of p' (thus; we may approximate el"? '2 +

as 1).

=.2nt .d e'klk 2d p'dp'=2t
p'dp'dO' - 27r 27r (B4)Jf J o J0  Vf7 o p'(

Now, we take the limit to show that the bracketed quantity Is zero:

11 2-Jl )(- + 1[2-122zj=O

Thus, Eq. (BI) becomes simply,

,im
H(r) = go f V xJ(r)y(Ir-r'I)dV.

V-V5
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